Asymmetric α-Amination of 4-Substituted Pyrazolones Catalyzed by a Chiral Gd(OTf)₃/N,N⁷-Dioxide Complex: Highly Enantioselective Synthesis of 4-Amino-5-pyrazolone Derivatives

2011 Vol. 13, No. 4 596–599

ORGANIC LETTERS

Zhigang Yang, Zhen Wang, Sha Bai, Xiaohua Liu, Lili Lin, and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China

xmfeng@scu.edu.cn

Received November 18, 2010

The asymmetric α -amination of 4-substituted pyrazolones with azodicarboxylates was investigated for the first time, employing an *N*,*N*'-dioxide gadolinium(III) complex as the catalyst. The novel transformations exhibited high yield, and 4-amino-5-pyrazolone derivatives bearing a chiral quaternary center were obtained in excellent yields (up to 99%) and enantioselectivities (90%–97% ee) for a broad scope of 5-pyrazolones by using 1 mol % or only 0.05 mol % of catalyst.

Pyrazolone derivatives characterized as a five-membered-ring lactam are important frameworks which exhibit a variety of applications as pharmaceutical candidates and biologically important structural components.¹ For example, analgin is used for the treatment of pains of different origin and variable intensity. The development of asymmetric methods to access pyrazolone derivatives with a quaternary stereogenic center² at the C4 position has thus given rise to considerable interest. However, relatively fewer examples have been documented for catalytic asymmetric transformations by using pyrazolone as a nucleophile.³ Recently, the enantioselective α -amination of azodicarboxylates with carbolic nucleophiles represents

For selected examples; see: (a) Mariappan, G.; Saha, B. P.; Bhuyan, N. R.; Bharti, P. R.; Kumar, D. J. Adv. Pharm. Tech. Res. 2010, 1, 260. (b) Ma, R.; Zhu, J.; Liu, J.; Chen, L.; Shen, X.; Jiang, H.; Li, J. Molecules 2010, 15, 3593. (c) Caruso, F.; Pettinari, C.; Marchetti, F.; Natanti, P.; Phillips, C.; Tanski, J.; Rossi, M. Inorg. Chem. 2007, 46, 7553.
 (d) Kimata, A.; Nakagawa, H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.; Suzuki, T.; Miyata, N. J. Med. Chem. 2007, 50, 5053. (e) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Heterocycl. Chem. 2007, 44, 49. (f) Ferlin, M. G.; Chiarelotto, G.; Acqua, S. D.; Maciocco, E.; Mascia, M. P.; Pisu, M. G.; Biggio, G. Bioorg. Med. Chem. 2005, 13, 3531. (g) Ebner, S.; Wallfisch, B.; Andraos, J.; Aitbaev, I.; Kiselewsky, M.; Bernhardt, P. V.; Kollenz, G.; Wentrup, C. Org. Biomol. Chem. 2003, 1, 2550. (h) El-sonbati, A. Z.; El-bindary, A. A.; El-mosalamy, E. H.; El-santawy, E. M. Chem. Pap. 2002, 56, 299. (i) Fryer, R. I; Zhang, P.; Rios, R.; Gu, Z.-Q.; Basile, A. S.; Skolnick, P. J. Med. Chem. 1993, 36, 1669. (j) Nagashima, S. Anal. Chem. 1983, 55, 2086. (k) Toth, B. Cancer Res. 1972, 32, 804. (l) Field, J. B.; Dolendo, E. C.; Mircles, A.; Ershoff, B. H. Cancer Res. 1966, 26, 1371.

⁽²⁾ For reviews of catalytic enantioselective construction of quaternary chiral centers, see: (a) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **2006**, *45*, 6366. (b) Christoffers, J.; Baro, A. *Adv. Synth. Catal.* **2005**, *347*, 1473. (c) Ramon, D. J.; Yus, M. *Curr. Org. Chem.* **2004**, *8*, 149.

⁽³⁾ For selected examples, see: (a) Liao, Y.-H.; Chen, W.-B.; Wu, Z.-J.; Du, X.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Adv. Synth. Catal. 2010, 352, 827. (b) Gogoi, S.; Zhao, C.-G. Tetrahedron Lett. 2009, 50, 2252. (c) Gogoi, S.; Zhao, C.-G.; Ding, D. Org. Lett. 2009, 11, 2249.

one of the best established strategies for the construction of chiral C–N bonds in organic chemistry.^{4,5} Catalytic enantioselective α -amination of pyrazolone has not yet been investigated to conduct optically active 4-amino-5-pyrazolones which are the core frame of numerous pharmaceutical compounds.

In asymmetric catalysis, the contribution of the chiral complex is of leading importance. Our group is endeavoring to develop chiral C_2 -symmetric N,N'-dioxide into a helpful ligand which could coordinate with a series of cations to form chiral complex catalysts.^{6–8} Especially, it could give selective and flexible catalysts with lanthanide metal salts⁹ which feature advantages in stability, recovery, the electropositive properties, and high coordination ability. Herein, we wish to report the first highly enantioselective α -amination of 4-substituted 5-pyrazolones with azodicarboxylates using a chiral N,N'-dioxide–Gd(III) complex as the catalyst. Excellent yields (up to 99%) and enantioselectivities (up to 97% ee) were achieved for a wide range of pyrazolones at 0.05–1 mol % catalyst loading.

Initially, (S)-pipecolic acid derived N,N'-dioxide L1 was complexed with various lanthanide metal salts to catalyze the asymmetric α -amination of 4-benzyl-5-pyrazolone (1a)

(6) For reviews on chiral *N*-oxides in asymmetric catalysis, see: (a) Malkov, A. V.; Kočovský, P. *Eur. J. Org. Chem.* **2007**, 29. (b) Chelucci, G.; Murineddu, G.; Pinna, G. A. *Tetrahedron: Asymmetry* **2004**, *15*, 1373. (c) Malkov, A. V.; Kočovský, P. *Curr. Org. Chem.* **2003**, 7, 1737 and the references therein.

(7) For our own work in this field, see: (a) Xie, M. S.; Chen, X. H.;
Zhu, Y.; Gao, B.; Lin, L. L.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2010, 49, 3799. (b) Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W. T.;
Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 8532. (c) Wang, W. T.; Liu, X. H.; Cao, W. D.; Wang, J.; Lin, L. L.; Feng, X. M. Chem.—Eur. J. 2010, 16, 1664. (d) Liu, Y. L.; Shang, D. J.; Zhou, X.;
Zhu, Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. Org. Lett. 2010, 12, 180. (e) Chen, D. H.; Chen, Z. L.; Xiao, X.; Yang, Z. G.; Lin, L. L.; Liu, X. H.;
Feng, X. M. Chem.—Eur. J. 2009, 15, 6807. (f) Liu, Y. L.; Shang, D. J.;
Zhou, X.; Liu, X. H.; Feng, X. M. Chem.—Eur. J. 2009, 15, 2055.

(8) (a) Kobayashi, S.; Kokubo, M.; Kawasumi, K.; Nagano, T. *Chem.*—*Asian J.* **2010**, *5*, 490. (b) Kokubo, M.; Ogawa, C.; Kobayashi, S. *Angew. Chem.*, *Int. Ed.* **2008**, *47*, 6909.

(9) (a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L. *Chem. Rev.* **2002**, *102*, 2227. (b) Mikami, K.; Terada, M.; Matsuzawa, H. *Angew. Chem., Int. Ed.* **2002**, *41*, 3554.

Table 1. Asymmetric α -Amination of 4-Benzyl-5-pyrazolone Catalyzed by *N*,*N*'-Dioxide—Metal Complexes^{*a*}

Entry	Metal	Ligand	$\stackrel{r_{ ext{ion}}}{(ext{\AA})^b}$	Yield $(\%)^c$	ee (%) ^d
1	La(OTf)3	L1	1.032	98	49
2	Ce(OTf) ₃	L1	1.010	94	76
3	Pr(OTf)3	L1	0.990	90	77
4	Nd(OTf) ₃	L1	0.983	94	82
5	Sm(OTf) ₃	L1	0.958	95	91
6	Eu(OTf) ₃	L1	0.947	90	92
7	$Gd(OTf)_3$	L1	0.938	95	93
8	Tb(OTf) ₃	L1	0.923	90	92
9	Dy(OTf) ₃	L1	0.912	88	89
10	Ho(OTf) ₃	L1	0.901	97	89
11	Er(OTf) ₃	L1	0.890	96	83
12	Tm(OTf) ₃	L1	0.880	94	75
13	Yb(OTf) ₃	L1	0.868	93	67
14	Lu(OTf) ₃	L1	0.861	85	59
15	Gd(OTf) ₃	L2	0.938	85	72
16	$Gd(OTf)_3$	L3	0.938	96	73
17	$Gd(OTf)_3$	L4	0.938	91	73
18	$Gd(OTf)_3$	L5	0.938	59	48
$19^{e,f}$	$Gd(OTf)_3$	L1	0.938	99	96
$20^{e,g,h}$	Gd(OTf) ₃	L1	0.938	98	96
$21^{e,g,h,i}$	Gd(OTf) ₃	L1	0.938	99	95
$22^{e,g,h,j}$	Gd(OTf) ₃	L1	0.938	96	93

^{*a*} Unless otherwise noted, all reactions were carried out with **1a** (0.1 mmol) and **2a** (0.1 mmol) in CH₂Cl₂ (1.0 mL) with catalyst loading of 5 mol % (metal/ligand = 1:1) under nitrogen at -20 °C for 36 h. ^{*b*} $r_{\rm ion}$: ionic radii (Å) of Ln^{3+,9b,10} ^{*c*} Yield of isolated product. ^{*d*} Determined by HPLC using chiral AD-H column. ^{*e*} 20 mg of 4 Å molecular sieves (MS) were added. ^{*f*} Reaction time: 2 h. ^{*s*} Reaction time: 4 h. ^{*h*} 1 mol % of catalyst loading was used. ^{*i*} Performed at 0 °C. ^{*j*} The reaction was carried out under an air atmosphere.

and diisopropylazodicarboxylate (2a) in CH_2Cl_2 at -20 °C (Table 1). The central metal ion was found to significantly affect the enantioselectivity of the reaction. As shown in Table 1, when changing the central metal from La(OTf)₃ to Gd(OTf)₃ in a gradually diminished order of the ionic radii, the enantioselectivity came to increase from 49% to 93% ee and the reactions completed within 36 h to give product **3a** with appropriate yields (Table 1, entries 1–7). In contrast, the enantioselectivity gradually decreased from 93% to 59% ee when the central metal was changed from Gd(OTf)₃ to Lu(OTf)₃ with the ionic radii continuing to decrease (Table 1, entries 7–14). The results of the influence of the metal cation suggested that Gd³⁺ has relative proper ionic radii to coordinate with the ligand

⁽⁴⁾ For reviews on asymmetric α-amination reactions, see: (a) Xu, L.-W.; Luo, J.; Lu, Y. *Chem. Commun.* **2009**, 1807. (b) Nájera, C.; Sansano, J. M. *Chem. Rev.* **2007**, *107*, 4584. (c) Janey, J. M. *Angew. Chem., Int. Ed.* **2005**, *44*, 4292. (d) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem. **2004**, 1377. (e) Duthaler, R. O. *Angew. Chem., Int. Ed.* **2003**, *42*, 975.

⁽⁵⁾ For selected examples of asymmetric α -amination, see: (a) Bui, T.; Hernández-Torres, G.; Milte, C.; Barbas, C. F., III. Org. Lett. **2010**, 12, 5696. (b) Han, X.; Zhong, F.; Lu, Y. Adv. Synth. Catal. **2010**, 352, 2778. (c) Mouri, S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. **2010**, *132*, 1255. (d) Yang, Z. G.; Wang, Z.; Bai, S.; Shen, K.; Chen, D. H.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem.-Eur. J. 2010, 16, 6632. (e) Bui, T.; Borregan, M.; Barbas, C. F., III. J. Org. Chem. 2009, 74, 8935. (f) Mashiko, T.; Kumagai, N.; Shibasaki, M. J. Am. *Chem. Soc.* **2009**, *131*, 14990. (g) He, R.; Wang, X.; Hashimoto, T.; Maruoka, K. *Angew. Chem., Int. Ed.* **2008**, *47*, 9466. (h) Liu, T.-Y.; Cui, H.-L.; Zhang, Y.; Jiang, K.; Du, W.; He, Z.-Q.; Chen, Y.-C. Org. Lett. 2007, 9, 3671. (i) Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 11342. (j) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128, 16044. (k) Liu, X.; Li, H.; Deng, L. Org. Lett. 2005, 7, 167. (1) Bernardi, L.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 5772. (m) Saaby, S.; Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120. (n) Vogt, H.; Vanderheiden, S.; Bräse, S. Chem. Commun 2003, 2448. (o) Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 1367. (p) Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420. (q) List, B. J. Am. Chem. Soc. 2002, 124, 5656, (r) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595, (s) Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119, 6452.

Table 2. α -Amination of 4-Substituted Pyrazolones 1 with Azodicarboxylates 2 Promoted by the Gadolinium Catalyst^{*a*}

$Ph'^{N} N R^{2} R^{2}$	^{230 OC} . N. N. COOR 2	L1 (1 mol%) Gd(OTf) ₃ (1 mol%) 3 4 Å MS, -20 °C CH ₂ Cl ₂	0 R ¹ HN-COOR ³ N-COOR ³ Ph N-N R ² 3
			37.11

Entry	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	<i>t</i> (h)	Yield $(\%)^b$	ее (%) ^с
1	Bn	Me	iPr	4	98(3a)	96
2	Bn	Me	Et	1	99 (3b)	97^d
3	Bn	Me	Bn	2	$99(\mathbf{3c})$	94
4	2 -MePhCH $_2$	Me	\mathbf{Et}	2	98 (3d)	96
5	3 -MePhCH $_2$	Me	\mathbf{Et}	2	90 (3e)	96
6	4-MePhCH ₂	Me	\mathbf{Et}	2	$96(\mathbf{3f})$	97
7	2 -MeOPhCH $_2$	Me	\mathbf{Et}	2	94(3g)	96
8	3 -MeOPhCH $_2$	Me	\mathbf{Et}	2	$97(\mathbf{3h})$	97
9	4-MeOPhCH ₂	Me	\mathbf{Et}	2	90(3i)	96
10	2-ClPhCH ₂	Me	\mathbf{Et}	2	85 (3j)	93
11	3-ClPhCH ₂	Me	\mathbf{Et}	2	98 (3k)	94
12	4-ClPhCH ₂	Me	\mathbf{Et}	10	$97(\mathbf{3l})$	95
13	4-BrPhCH ₂	Me	\mathbf{Et}	2	91 (3m)	93
14	$2,4$ - Cl_2PhCH_2	Me	\mathbf{Et}	2	99 (3n)	94
15	2-furanylmethyl	Me	\mathbf{Et}	2	$85(\mathbf{3o})$	94
16	2-thienylmethyl	Me	\mathbf{Et}	2	98 (3p)	92
17	1-naphthylmethyl	Me	\mathbf{Et}	2	$97(\mathbf{3q})$	94
18	2-naphthylmethyl	Me	\mathbf{Et}	2	98(3r)	94
19^e	Me	Ph	$i \Pr$	12	92(3s)	90
20^e	Et	Me	$i \Pr$	14	92(3t)	93
21	<i>n</i> -propyl	Me	\mathbf{Et}	2	94(3u)	92
22	allyl	Me	Et	2	96(3v)	93
23	$-(CH_{2})_{4}-$		\mathbf{Et}	10	98(3w)	94

^{*a*} Unless otherwise noted, all reactions were carried out with 5-pyrazolone 1 (0.1 mmol), azodicarboxylates 2 (0.1 mmol), and 4 Å MS (20 mg) in CH₂Cl₂ (1.0 mL) with a catalyst loading of 1 mol % L1/ Gd(OTf)₃ (1:1) under nitrogen at -20 °C. ^{*b*} Yield of isolated product. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} The absolute configuration of **3b** was determined by X-ray analysis (see Figure 1a). The other products were assigned by analogy. ^{*e*} The catalyst was L4/Ho(OTf)₃ and in the absence of 4 Å MS.

to form the active catalyst with a strong asymmetric inducing capability.

Further optimization of the reaction conditions was then aimed at the efficiency of $Gd(OTf)_3$ with other N, N'-dioxide ligands. The results showed that the steric and electronic effects of the amide moiety played a crucial role on the asymmetric induction of the α -amination reaction (Table 1, entries 15,16). Moreover, the chiral backbone of the N,N'-dioxide had also a significant impact on the enantioselectivity of the reaction. (S)-Pipecolic acid derivative N.N'-dioxide L1 was superior to L-proline derived L4 and L-ramipril acid derived L5 (Table 1, entry 7 vs entries 17 and 18). Remarkably, when 4 Å molecular sieves (20 mg) were employed as an additive, the reaction rate was greatly improved with completed conversion within 2 h to give product 3a, and the enantioselectivity slightly increased from 93% to 96% ee (Table 1, entry 19). The role of the 4Å molecular sieves might be helpful for the promotion of the

Figure 1. (a) X-ray structure of **3b** with Cu K α radiation (H atoms omitted for clarity). (b) Nonlinear effect in the amination of **1a** with **2b** catalyzed by the L1–Gd(OTf)₃ complex. (c) Proposed transition-state model.

equilibrium for the formation of the enolate intermediate and to accelerate the reaction.^{5h} Notably, reducing the catalyst loading to 1 mol % led to no loss of yield and enantioselectivity (Table 1, entry 20). Moreover, the enantioselectivity was slightly decreased when the reaction was carried out at 0 $^{\circ}$ C or under an air atmosphere.

After having established the optimal reaction conditions (Table 1, entry 20), we began to examine the scope of the α amination reaction. First, the effect of the ester group of the azodicarboxylate was tested for the asymmetric α amination of 4-benzyl-5-pyrazolone. The ester groups exhibited a slight effect on both the reactivity and enantioselectivity (Table 2, entries 1-3). Diethylazodicarboxylate (DEAD) was the best electrophile for this reaction, and the corresponding product 3b was obtained in 99% yield with 97% ee after 1 h (Table 2, entry 2). Next, a wide variety of pyrazolones bearing different arylmethyl substituents were investigated for this chiral gadolinium(III) complex catalyzed α -amination reaction (Table 2, entries 4–23). In general, the reactions took place efficiently with excellent levels of enantioselectivity (90-97% ee) and good yields (85-99%). The absolute configuration of 3b was determined by X- ray crystallography to be R (Figure 1a).

The catalytic synthesis of optically active chiral compounds with an extremely low catalyst loading is one of the most valuable advantages for the chemical industry. Although the asymmetric α -amination of the other carbolic nucleophiles with azodicarboxylates had been reported,^{4,5} most of these transformations required at least 5 mol % of catalyst loading for sufficient formation of the product and maintenance of the enantioselectivity. The reaction reported herein could be performed without obvious influence upon the enantioselectivity and reactivity even with a catalyst loading of 0.05 mol %, albeit with a somewhat prolonged

⁽¹⁰⁾ Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751.

Table 3. α -Amination of 4-Substituted Pyrazolones 1 with Diethylazodicarboxylate 2b Using 0.05 mol % Catalyst Loading^a

Ph ^N	$\int_{N}^{R^{1}} + \text{DEAD} \frac{0.05 \text{ m}}{4 \text{ Å M}}$	iol % L1 /Gd S, -20 °C, C	(OTf) ₃ H ₂ Cl ₂ Ph ^N N	
Entry	\mathbb{R}^1	$t\left(\mathbf{h}\right)$	Yield $(\%)^b$	ee (%) ^c
1	Bn	5	96 (3b)	93
2	2-MePhCH ₂	10	97 (3d)	96
3	4-MePhCH ₂	10	$95(\mathbf{3f})$	90
4	3 -MeOPhCH $_2$	10	$90(\mathbf{3h})$	93
5	2 -ClPhCH $_2$	10	96 (3j)	93
6	3 -ClPhCH $_2$	10	95 (3k)	94
7	2,4-Cl ₂ PhCH ₂	10	94 (3n)	90
8	2-thienylmethyl	12	95(3p)	92

^{*a*} Unless otherwise noted, all reactions were carried out with 5-pyrazolone **1** (0.1 mmol), diethylazodicarboxylate (DEAD) **2b** (0.1 mmol), and 4 Å MS (5 mg) in CH₂Cl₂ (1.0 mL) with 0.05 mol % **L1**/Gd(OTf)₃ (1:1) under nitrogen at -20 °C. ^{*b*} Yield of isolated product. ^{*c*} Determined by chiral HPLC analysis.

reaction time (Table 3). And a relatively wide range of substrates can be tolerated, affording the desired products with 90–97% yield and 90–96% ee. It is noteworthy that this is a rare example of an asymmetric α -amination with azodicarboxylates with such a low amount of catalyst (0.05 mol %).

The low catalyst loading and the inexpensive starting materials and catalyst for this α -amination reaction offered a practical way to scale-up production. As shown in Scheme 1, the reaction proceeded smoothly and the desired addition product **3b** was obtained in 95% yield with 93% ee using only a 0.05 mol % *N*,*N*'-dioxide **L1**-gadolinium-(III) complex as the catalyst.

The relationship between the enantiomeric excess of the ligand L1 and the product 3b was investigated. A positive nonlinear effect was observed (Figure 1b), suggesting that the oligomeric aggregates of L1–Gd(OTf)₃ might exist in the reaction system. On the basis of the observed absolute configuration of enantiopure 3b and previous reports of using N,N'-dioxide–metal complexes as catalysts,^{7c,f} a plausible working model by concerted activation was proposed. As illustrated in Figure 1c, the carbonyl group

Scheme 1. Asymmetric α -Amination of 4-Substituted Pyrazolones 1a on a Gram Scale

of the pyrazolone would coordinate to the active L1-Gd complex to form an enolate. The azodicarboxylate also can coordinate to the central metal ion through an ester carbonyl group. Subsequently, the *Re*-face attack of the electrophilic diethylazodicarboxylate of the enolate would afford the desired adduct **3b** with an *R*-configuration.

In summary, we have successfully presented the first highly stereoselective α -amination of 4-substituted pyrazolones with azodicarboxylates as the nitrogen fragment source. The reactions were catalyzed by an *N*,*N*'-dioxide gadolinium(III) complex to give the optically active 4-amino-5-pyrazolones in high yields (up to 99%) and excellent enantioselectivities (up to 97% ee). In particular, the procedure is capable of tolerating a relatively wide range of substrates, and excellent results (90%-96% ee) can also be obtained, even in the presence of 0.05 mol % of catalyst loading. Furthermore, excellent ee values and yields can also be obtained in gram-scale, which showed the potential value of the catalyst system. Current studies are underway to investigate the synthetic utility of the α -amination products.

Acknowledgment. We acknowledge the National Natural Science Foundation of China (Nos. 20732003 and 21021001) and the National Basic Research Program of China (973 Program: No. 2010CB833300) for financial support. We also thank Sichuan University Analytical & Testing Center for NMR and X-ray analysis.

Supporting Information Available. Experimental procedures and spectral and analytical data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.